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Abstract
A review of the available tools for the calculation of the neutron double-
differential cross-section of fundamental molecules, such as hydrogen and
methane, is reported here. The most common cases occurring in neutron data
analysis are treated in detail with the aim of providing the reader with intelligible
and efficient procedures. The utility nowadays of these kinds of computation
are widely described, and applications discussed, with examples based on the
comparison with experimental data. New advances and refinement/corrections
of earlier work are given throughout the paper, as well as suggestions for
practical implementation.
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1. Introduction

More than 50 years of research have been devoted to the development of calculation methods
and models able to describe the scattering of slow and thermal neutrons from simple molecular
systems, [1–19] representing only part of the huge work on the subject. Most studies on
the dynamical response to neutrons of light molecular gases and liquids—mainly hydrogen
and methane—were stimulated, beyond their fundamental physical significance, by important
applications in the field of neutron science and technology (e.g. moderators in neutron sources,
cold neutron sources, neutron shielding, etc).

As a matter of fact, the general interest in the refinement of models for the computation
of the neutron differential cross-sections (either self or distinct, or both, as explained in the
following sections) of simple molecules such as hydrogen, methane, their heavy counterparts
(D2, CD4) and, to some approximation, of other di- and polyatomic fluids, has never faded
through the years. This is partly due to the experimental work devoted, in the last decade
and at present, to the accurate determination of the microscopic static structure of quantum
and classical molecular fluids by neutron diffraction techniques [19–25], which requires both
a reasonable evaluation of the inelastic contributions to the scattered intensity and a good
modelling of the intra- and intermolecular neutron cross-sections, necessary to allow for the
extraction of the centre-of-mass (CM) structure factor of the measured samples. Another,
equally important, reason for such a reiterated concern is the rather modern introduction of
dilute H2 and CH4 as competing (with respect to vanadium or water) normalization standards for
neutron diffraction experiments on liquid and gaseous samples [26–28], which relies on the use
of accurate models—including a quantum mechanical treatment of rotations and vibrations—
for the self -differential cross-section of low-density hydrogen or methane, at various incident
neutron energies and over different wavevector transfer ranges, depending on the experimental
circumstances.

The present need for well-established procedures to calculate the neutron differential cross-
sections of the quoted molecular systems and, particularly, for the effective tools and simple
knowledge useful in related computer programming and implementation, is not fully supported,
however, by the available literature. Indeed, papers on this subject often have a heavily
theoretical cut, and suffer either from the rather complex, but unavoidably concise, exposition
of the basic theory and approximations, or from continuously mismatched notation, which
is sometimes difficult to follow from one paper to another. In addition, several misprints or
incomplete formulae can be detected by careful inspection of theories and quantum-mechanical
calculations in the literature, which should definitely be reported and settled, in order to prevent
their inadvertent use.

One of the aims of this paper is therefore to translate (and gather) for true users the essence
of a huge amount of theoretical work on neutron cross-sections of simple molecules. As far as
possible, a self-consistent picture of the calculations required will be given. Basic formulae,
easily applicable to practical computation and computer programming, will be explained and
reported, together with a description of the approximations, and some advice concerning
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numerical problems or useful tricks. Preliminary checks, necessary to assess the computational
requirements, will also be described in some detail.

Another objective of this work is to give the reader a unified, improved and updated
reference for this field, including examples, corrections and/or extensions of previous papers,
comparison with recent experimental results when possible,and mention of still open problems.
Of course, several original contributions are reported also. The case of the hydrogens (H2 and
D2) will be discussed, as well as that of methane (CH4 and CD4). For the latter, a smooth
quantum-mechanical calculation, also allowing for the treatment of the lowest vibrational
transitions, is proposed here and tested against experimental data. Approximate model
calculations for chlorine will be described as well.

2. The neutron double-differential cross-section of molecular fluids: review

Consider the scattering of slow and thermal neutrons from a system composed of N identical
polyatomic molecules, each containing n nuclei. If the neutron momentum changes from h̄k0

to h̄k1 during a collision with an energy transfer E = E0 − E1, while the molecular system
simultaneously undergoes a transition between an initial (global, i.e. vibro-roto-translational-
spin) state |L0〉 of energy EL0 , and a final (global) state |L1〉 of energy EL1 , then the double-
differential cross-section per molecule (per unit solid angle and unit energy transfer) can be
written as

d2σ

d� dE
= 1

N

k1

k0

∑
L0µ0

pL0 pµ0

∑
L1µ1

|〈µ1|〈L1|
N∑

j=1

n∑
ν=1

b̂ jνe
iQ·R jν |L0〉|µ0〉|2δ(E + EL0 − EL1)

(1)

where |µ0〉 and |µ1〉 synthetically represent the initial and final spin states of the neutron
|1/2 µ〉, with µ the quantum number of the z component of the neutron spin operator;
Q = k0 − k1 is the wavevector transfer; R jν and b̂ jν are, respectively, the position vector and
scattering length operator (depending on both the spin I jν of the nucleus and the spin s of the
neutron) of the vth nucleus in the j th molecule; pL0 and pµ0 indicate the probability of the
initial states |L0〉 and |µ0〉; and the Dirac delta function accounts for the conservation of the total
energy, i.e. EL0 + E0 = EL1 + E1, in the process. Equation (1) is simply the generalization to
molecules of the well-known master formula of neutron scattering (see, e.g., [17, 29]), when
the Fermi pseudopotential is used as the neutron–nucleus interaction. The above equation
is valid (i) within the limits of the first Born approximation, (ii) if no electronic transition
is allowed in the scattering event, and (iii) if the adiabatic approximation for the electronic
motion holds, with the molecules permanently remaining in their ground electronic state.

In order to facilitate the comparison with many experimental papers, it is preferable to
change the energy variables according to E = h̄ω, and to rewrite equation (1) in the form

d2σ

d� dω
= 1

2πN

k1

k0

∫
dt e−iωt

∑
L0µ0

pL0 pµ0

∑
L1µ1

eiωL0 L1 t |〈µ1|〈L1|
N∑

j=1

n∑
ν=1

b̂ jνeiQ·R jν |L0〉|µ0〉|2

(2)

where the integral representation of the Dirac delta function was used and ωL0 L1 =
(EL1 − EL0)/h̄. The position vector R jν can, of course, be expressed as R jν = R j + r jν , that
is as the sum of the position vector R j of the CM of the molecule and the position vector r jν ,
with respect to the CM, of nucleus ν inside the molecule itself.

In what follows, we shall make the basic assumption that the simple (i.e. insulating
and highly symmetric) molecules we are interested in behave as free vibro-rotors. This
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means that the intermolecular interactions are ruled by an essentially isotropic potential, and
that the relative orientations of the molecules (rotation coupling), as well as the coupling
between vibrational states of different molecules, play a negligible role. As a consequence,
the translational (CM) dynamics of the molecules in the system can be considered as
completely independent of the individual roto-vibrational states. Such an assumption is
known to be justified even for the solid (low-pressure) phase of the hydrogens [30], and can
represent a reasonable starting point for heavier homonuclear diatomic molecules, whenever
the anisotropic contributions are treatable as small perturbations of the isotropic intermolecular
potential. Concerning methane, the validity of the free-rotor approximation arises from [15]:
(i) its high symmetry, (ii) the absence of molecular clustering phenomena, even at liquid
densities, and (iii) experimental evidence of weak intermolecular rotational correlations [31],
i.e. negligible orientation-dependent interactions.

For free rotors, the global state |L〉 can thus be factorized as |L〉 = |τ 〉|W 〉, where |τ 〉 is
the complete set representing the overall translational state of the system and |W 〉 is its roto-
vibrational and spin state. Note that the latter definitions mean also that the CM translational
dynamics is independent of the molecular spin states. The new version of equation (2) resulting
from the above quoted assumptions is

d2σ

d� dω
= 1

2πN

k1

k0

∫
dt e−iωt

N∑
i, j=1

∑
τ0τ1

pτ0 eiωτ0τ1 t 〈τ0|e−iQ·Ri |τ1〉〈τ1|eiQ·R j |τ0〉

×
∑
W0µ0

pW0 pµ0

∑
W1µ1

eiωW0 W1 t 〈µ0|〈W0|
n∑
v=1

b̂∗
iνe

−iQ·riν |W1〉|µ1〉〈µ1|〈W1|

×
n∑

ν′=1

b̂ jν′eiQ·r jν′ |W0〉|µ0〉. (3)

By using the completeness relation over the translational states and expressing the centre-
of-mass position operators in the Heisenberg representation, the double-differential cross-
section can be rewritten in terms of the self and distinct intermediate scattering functions,
Fs(Q, t) = 1

N

∑N
i=1〈e−iQ·Ri (0)eiQ·Ri (t)〉 and Fd(Q, t) = 1

N

∑N
i, j=1
i �= j

〈e−iQ·Ri (0)eiQ·R j (t)〉, as

d2σ

d� dω
= 1

2π

k1

k0

∫
dt e−iωt [Fs(Q, t)v(Q, t) + Fd(Q, t)u(Q)]

with v(Q, t) =
∑
w0µ0

pw0 pµ0

∑
w1µ1

eiωw0w1 t |〈µ1|〈w1|Ô|w0〉|µ0〉|2

and u(Q) =
∑
µ0

pµ0

∑
µ1

∣∣∣∣∑
w0

pw0〈µ1|〈w0|Ô|w0〉|µ0〉
∣∣∣∣
2

(4)

where Ô = ∑n
ν=1 b̂νeiQ·rν is a single-molecule operator and we have used the factorization

|W 〉 = |w〉(1)|w〉(2) · · · |w〉(N) into N single-molecule (roto-vibrational and spin) states.
Therefore, both u(Q) and v(Q, t) are single-molecule functions, and it should be clear that
equation (4) only holds for a system of N strictly identical molecules, i.e. with exactly the
same isotopic composition. Since u(Q) is time-independent, the distinct part in equation (4)
reduces to ( d2σ

d� dω )d = k1
k0

u(Q)Sd (Q, ω), which probes the intermolecular CM dynamics of the
fluid arising from correlations (ruled by the interaction potential) between different molecules.
Note that the van Hove coherent–incoherent description of the dynamic structure factor
corresponds, in the self-distinct formalism, to S(Q, ω) = Scoh(Q, ω) = Sd(Q, ω)+ Ss(Q, ω),
while Sinc(Q, ω) = Ss(Q, ω). Purely coherent scattering will thus characterize u(Q) and,
consequently, the distinct contribution to the total cross-section. Concerning the intramolecular
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structure, i.e. the self part in equation (4), it is seen that, at the present stage, the time dependence
of v(Q, t) prevents one from deriving an explicit expression in terms of the self dynamic
structure factor Ss(Q, ω) = 1

2π

∫
dt e−iωt Fs(Q, t). However, by noting that time enters

the expression of v(Q, t) only in exponential form, it is possible to rewrite the self part of
equation (4) as(

d2σ

d� dω

)
s

= 1

2π

k1

k0

∑
w0µ0w1µ1

pw0 pµ0

∣∣∣∣〈µ1|〈w1|
n∑
v=1

b̂ν eiQ·rν |w0〉|µ0〉
∣∣∣∣
2

×
∫

dt e−iωt eiωw0w1 t Fs(Q, t)

= k1

k0

∑
w0µ0w1µ1

pw0 pµ0

∣∣∣∣〈µ1|〈w1|
n∑
ν=1

b̂ν eiQ·rν |w0〉|µ0〉
∣∣∣∣
2

Ss(Q, ω − ωw0w1). (5)

Thus, the overall self part corresponds to the sum, over the possible transitions, of single-
molecule contributions in which the translational self dynamics can effectively be factored
out, but explicitly depends (through a frequency shift) on the specific intramolecular transition.
Transition probabilities are also seen to rule the importance of the various terms in the above
series.

Equation (4) quite generally represents the starting point for these kinds of calculations,
which, apart from the problem of choosing appropriate models for the self and distinct
translational dynamics (addressed in the remainder of this paper), deals firstly with the
calculation of u(Q) and v(Q, t).

In this respect, the next fundamental point in computing u(Q) and v(Q, t) for the systems
we are mainly concerned with in this paper, that is the homonuclear diatomic and the spherical-
top molecules, depends on whether the effects of nuclear spin statistics can or cannot be
neglected. Unless nuclei of the same element present in the molecule can be treated as
Boltzmann particles (i.e. quantum effects related to the indistinguishability principle can be
neglected, either because of the high temperature or because identical nuclei have spin I → ∞)
the symmetry requirements on the total molecular wavefunction impose a coupling between
the total spin state and the rotational state of the molecule (assumed to be in the ground
vibrational state). Such a coupling, widely addressed as a ‘spin correlation’, not only alters the
multiplicity of the rotational levels with respect to the uncorrelated case, but the way in which
this modification takes place changes with the specific rotational state under consideration (see,
e.g., [32]). This affects the resulting cross-section, since the initial state probabilities pw0 turn
out to depend on the present species concentrations (ortho, para, meta . . .) and the expressions
change, in general, when the rotational level is varied. Further, the spin dependence of the
neutron scattering length operator, namely b̂ = bcoh + 2binc√

I (I+1)
s · I , has peculiar effects on the

scattering cross-section when spin correlations are taken into account. In fact, the rotational
transitions induced by the neutrons are found to be weighted by different (sometimes leading to
very different values) combinations of bcoh and binc, depending on the specific levels involved.

In the case of the hydrogens, e.g. [9, 10, 13, 19], spin correlation effects are particularly
important, but fortunately, as for all homonuclear diatomic molecules, they are ruled only
by the parity of the rotational states (and not by the specific rotational quantum numbers).
Moreover, only one species (ortho or para) can occur for a given rotational level of a diatomic
molecule. Such simplifications, however, do not apply to other molecules, like spherical tops
and symmetric tops, where more than one species can coexist for a given rotational state and
no easy (e.g. parity-dependent) rule can be derived in order to account for spin correlation
effects on the rotational levels degeneracy [32]. A careful treatment of spin correlations for
the methane molecule [12] has shown, however, that their effects on the scattering response
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become appreciable only for the gas at very low temperatures (∼10 K), which is a rather
atypical condition for common applications, usually regarding either gaseous methane at room
temperature (e.g. for neutron data normalization purposes) or liquid methane near to the triple
point (∼100 K, e.g. in the case of neutron moderators).

A reasonable criterion for choosing whether to carry out the uncorrelated-spin case or not
is to compare the rotational constant B of the molecule with the thermal energy for the case
of interest (kB T , with kB the Boltzmann constant) [13, 15]. In the ‘high temperature limit’,
kB T 
 B , quantum effects due to indistinguishability of the nuclei are expected to vanish and
the resulting cross-section is that of Boltzmann particles. According to this criterion, it is seen
that the lighter and smaller is the molecule (the larger is B), the higher are the temperatures
at which the neglect of spin correlations starts to be admissible. Hydrogen is liquid down
to very low temperatures (∼20 K) compared to other molecular liquids such as methane
(∼90 K). In addition, the rotational constant of hydrogen (7.35 meV) is the highest among
molecules (for instance, B = 0.65 meV for methane). Therefore, while nuclear spin statistics
and correlations deeply characterize the shape of the neutron spectra from the hydrogens in
most thermodynamic states, the same does not happen for other molecules, even at their liquid
temperatures.

In the next subsections we shall consider the homonuclear diatomic molecules, both in the
presence of spin correlations and in the uncorrelated case. The latter will also be carried out
for the more complicated situation of spherical-top molecules. It is useful to note by now that,
when spin correlations are neglected, the states W in equation (3) can be further factorized into
|W 〉 = |S〉|U〉, where |S〉 represents the total molecular spin state of the system and |U〉 the
total roto-vibrational state. The large simplification in the uncorrelated case lies in the fact that
summations over matrix elements involving spin variables (contained in the scattering length
operators) and those related to nuclear coordinates can be treated separately. As a result of a
full decoupling of the total spin and roto-vibrational state of the system, equation (3) becomes(

d2σ

d� dω

)uncorr

= 1

2πN

k1

k0

∫
dt e−iωt

N∑
i, j=1

n∑
ν,ν′=1

∑
µ0

pµ0

∑
S0

pS0〈µ0|〈S0|b̂∗
iν b̂ jν′ |S0〉|µ0〉

×
∑
τ0

pτ0〈τ0| e−iQ·Ri (0) eiQ·R j (t)|τ0〉
∑
U0U1

pU0 eiωU0U1 t

× 〈U0| e−iQ·riν |U1〉〈U1| eiQ·r jν′ |U0〉. (6)

The average over the spin part can be calculated to give biν
cohb jν′

coh +(biν
inc)

2δν,ν′δi, j . Therefore, by
separating into self and distinct contributions, after factorization of the states |U〉 into single-
molecule roto-vibrational |u〉 states, and by including the intermediate scattering functions,
we obtain the equivalent of equation (4) in the uncorrelated case:(

d2σ

d� dω

)uncorr

= 1

2π

k1

k0

∫
dt e−iωt [Fs(Q, t)v(Q, t)uncorr + Fd(Q, t)u(Q)uncorr ]

with v(Q, t)uncorr =
n∑

ν,ν′=1

(bνcohbν
′

coh + bν
2

incδν,ν′)
∑
u0,u1

pu0 eiωu0u1 t

× 〈u0| e−iQ·rν |u1〉〈u1| eiQ·rν′ |u0〉
and u(Q)uncorr =

∣∣∣∣
n∑
ν=1

bνcoh

∑
u0

pu0〈u0| eiQ·rν |u0〉
∣∣∣∣
2

(7)

which will be useful later on.
It is worth pointing out that the model calculations summarized in the following, which

take as their main reference and starting point the quantum mechanical treatment of Young and
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Koppel for the hydrogens [9] and of Griffing [8] for methane, serve only as a memento and basic
knowledge for the understanding of subsequent discussion on the effective implementation of
these kinds of calculations. To this aim, formulae (originally derived in different papers by dif-
ferent authors) are reported here with uniform notation from one case to another, in order to pro-
vide the reader with a single, and hopefully useful, self-consistent ‘vade-mecum’ in this field.

3. Homonuclear diatomic molecules

3.1. Non-negligible spin correlations

If, as a further hypothesis, intramolecular vibration–rotation coupling is neglected, the
stationary states |w〉 of equation (4) for the internal degrees of freedom of a freely vibro-
rotating diatomic molecule are of the form

|w〉 = |J M〉|T MT 〉|υ〉 with

Ew = [Erot + Evib] = [B J (J + 1)− D J 2(J + 1)2 + Evib]

pw = exp(−βEw)∑
w′ exp(−βEw′)

, β = (kB T )−1

(8)

where the quantum numbers for rotational, total nuclear spin and vibrational state of the
molecule were explicitly introduced, as well as the rotational (D accounts for the centrifugal
distortion) and vibrational contributions to the energy of the molecule in statew of probability
pw. However, the required symmetry for the total molecular wavefunction makes possible, in
the present case, only those product states |w〉, where T and J appear with the same parity.
Such a restriction applies both for bosons and for fermions. Therefore, as a consequence of
the indistinguishability principle, the product states |w〉 do not form a complete set in either
case. According to equation (8) and the above requirements, the corresponding expressions
for v(Q, t) and u(Q) in equation (4) become

v(Q, t) =
∑
µ0µ1

pµ0

∑
J0T0

∗ pJ0T0

∑
M0

pM0

∑
MT0

pMT0

∑
J1T1

∗ eiωJ0 J1 t
∑
υ1

eiωυ0υ1 t

×
∑
M1

∑
MT1

|〈µ1|〈J1 M1|〈T1 MT1 |〈υ1|Ô|υ0 = 0〉|T0 MT0 〉|J0 M0〉|µ0〉|2 (9)

u(Q)=
∑
µ0µ1

pµ0

∣∣∣∣∑
J0T0

∗ pJ0T0

∑
M0

pM0

∑
MT0

pMT0
〈µ1|〈J0 M0|〈T0 MT0 |〈0|Ô|0〉|T0 MT0 〉|J0 M0〉|µ0〉

∣∣∣∣
2

(10)

where the star at the summations over J and T means that these run only on the possible
(equal parity) J , T couples. Moreover, molecules were assumed to lie initially in the ground
vibrational state (υ0 = 0), which is a more than justified assumption for most systems up to
room temperature (the first excited vibrational state lies at 556.76 meV for deuterium, and at
988.43 meV for CD4, while kB T at room temperature is about 25 meV).

Before calculating the matrix elements in equations (9) and (10), it is convenient to include
explicitly the diatomic and homonuclear nature of the fluid in the expression of the operator Ô :

Ô =
2∑
ν=1

b̂νeiQ·rν = b̂1 eiQ·r1 + b̂2 eiQ·r2 = b̂1 eiQ· r
2 + b̂2e−iQ· r

2

= (b̂1 + b̂2) cos
Q · r

2
+ i(b̂1 − b̂2) sin

Q · r

2
(11)
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with r being the nuclei interdistance vector, at half of which lies the centre of mass of the
molecule. The calculation of v(Q, t) implies the evaluation of |X |2, with X given by

X = X (+)R(+) + X (−)R(−) with

R(+) = 〈J1 M1|〈υ1| cos
Q · r

2
|0〉|J0 M0〉

X (+) = 〈µ1|〈T1 MT1 |2bcoh +
2binc√
I (I + 1)

(s · T )|T0MT0 〉|µ0〉

R(−) = 〈J1 M1|〈υ1| sin
Q · r

2
|0〉|J0 M0〉

X (−) = 〈µ1|〈T1 MT1 |i
2binc√
I (I + 1)

s · (I1 − I2)|T0 MT0 〉|µ0〉

(12)

where T = I1 + I2 is the total molecular spin (I1 = I2 = I ). The quantum-mechanical
calculation of the matrix elements R(±) is performed by assuming harmonic vibrations and
taking, since vibration–rotation coupling is neglected and rotations are free, the spherical
harmonics as rotational wavefunctions. The direction of the molecule is identified by the polar
angles (θ, ϕ)with respect to the direction of Q, so that Q ·r = Qrηwith η = cos θ . Moreover
r is expressed as r = x + Req , i.e. as the sum of the equilibrium internuclear distance Req

and the bond stretching x . Use of the quantum algebraic method for the treatment of a linear
harmonic oscillator leads to

R(+) = (iα)υ1

2
√
υ1!

〈J1 M1| f (η)|J0 M0〉 with f (η) = e−α2η2/2ηυ1 [eiβη + (−1)υ1 e−iβη]

R(−) = (iα)υ1

2i
√
υ1!

〈J1 M1| f̃ (η)|J0 M0〉 with f̃ (η) = e−α2η2/2ηυ1 [ eiβη − (−1)υ1 e−iβη]
(13)

whereβ = 1
2 Q Req , α = Q

√
h̄/

√
2Mωv, M is the mass of the molecule andωv is the frequency

of the oscillator such that Eυ = h̄ωv(υ + 1
2 ). Note that f (η) and f̃ (η) are, respectively, an

even and an odd function of η, independently of the parity of υ1. Well-known properties of
the spherical harmonics [33, 34] can be used to express the rotational matrix elements in terms
of the Clebsch–Gordan (CG) coefficients C and the Legendre polynomials Pl , as (g(η) is an
even or odd function of η):

〈J1 M1|g(η)|J0 M0〉 = (−1)M1

2

√
(2J1 + 1)(2J0 + 1)δM1,M0

×
J1+J0∑

l=|J1−J0|
C(J1 J0l; 000)C(J1 J0l; −M1 M00)δJ1+J0+l,2k

∫ 1

−1
dη g(η)Pl(η) (14)

which vanishes unless M1 = M0, J1 + J0 + l is even, and g(η) has the same parity of l, with
|J0 − J1| < l < J0 + J1. Due to these restrictions, and to the parity properties of f and f̃ , we
find that R(+) = 0 if J1 + J0 is odd (l odd, �J odd) and R(−) = 0 if J1 + J0 is even (l even,
�J even). Therefore

∑
M0 M1

pM0 |X |2 =




|X (+)|2
∑

M0 M1

pM0 |R(+)|2 = |X (+)|2

×
[
α2υ1 (2J1 + 1)

4υ1!

∑
l even

C2(J1 J0l; 000)|Al,υ1 |2
]
, �J even

|X (−)|2
∑
M0 M1

pM0 |R(−)|2 = |X (−)|2

×
[
α2υ1 (2J1 + 1)

4υ1!

∑
l odd

C2(J1 J0l; 000)|Al,υ1 |2
]
, �J odd

(15)
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where we defined Al,υ1 = ∫ 1
−1 dη ηυ1 e−α2η2/2 eiβηPl(η) and we used pM0 = (2J0 + 1)−1. Note,

however, that the restriction over the summations in square brackets can be removed, since the
CG coefficients are zero in correspondence with the forbidden values of l.

These results, combined with the parity coupling between J and T , the conservation
of spin angular momentum (�T = 0,±1) and the fact that X (+) = 0 if �T = ±1 and
X (−) = 0 if �T = 0, allows one to evaluate the spin part in v(Q, t) as if summations over
T1 were unrestricted and states |T1 MT1 〉|µ1〉 formed a complete set. For unpolarized neutrons
(pµ0 = 1/2), all these considerations lead to

∑
µ0µ1

pµ0

∑
T1 MT1

|X (±)|2 =




4b2
coh +

b2
inc

I (I + 1)
T0(T0 + 1), �J even

b2
inc

[
4 − T0(T0 + 1)

I (I + 1)

]
, �J odd.

(16)

Before deriving the final expression for v(Q, t), one needs to consider how the initial state
probabilities pJ0T0 in equation (9) split accordingly with the parity of the rotational levels.
By remembering that rotational and spin levels, J and T have, respectively, a (2J + 1)- and
(2T + 1)-fold degeneracy, the probability pJ0T0 is

pJ0T0 = (2J0 + 1)(2T0 + 1)e−βE J0∑∗
J0T0
(2J0 + 1)(2T0 + 1)e−βE J0

(17)

which correctly takes into account the coupling of J and T . The above probability can be
written more conveniently by introducing the even and odd, rotational and spin, partition
functions:

Ze =
∑

J0 even

(2J0 + 1)e−βE J0 , Zo =
∑
J0 odd

(2J0 + 1)e−βE J0 ,

ge =
∑

T0 even

(2T0 + 1), go =
∑

T0 odd

(2T0 + 1),
(18)

and evaluating the concentration of the even and odd states (xe + xo = 1):

xe = Zege

Zege + Zogo
, xo = Zogo

Zege + Zogo
. (19)

With these definitions, and by noting that Zege + Zogo is the denominator at the second member
of equation (17), the latter becomes

pJ0T0 =



(2J0 + 1)(2T0 + 1)e−βE J0

Zege
xe ≡ pe

J0
pe

T0
xe, for J0 and T0 even

(2J0 + 1)(2T0 + 1)e−βE J0

Zogo
xo ≡ po

J0
po

T0
xo, for J0 and T0 odd

(20)

where even and odd, rotational and spin, ‘probabilities’ were defined as

pe,o
J0

= (2J0 + 1)e−βE J0

Ze,o
, pe,o

T0
= (2T0 + 1)

ge,o
.

The spin partition function can be calculated as a function of the nuclear spin I of the
nuclei, and the results are reported in table 1, together with the corresponding values for
the species equilibrium concentrations and their so-called normal values in the limit of high
temperatures, when Ze ≈ Zo.

Thus, different probabilities pertain to the odd and even levels,and the two possible species
(even or odd) are identified with the para or ortho states of the molecule. As summarized in
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Table 1. The spin partition function g and species concentrations x as a function of the nuclear
spin I of the nuclei for fermions and bosons. The species normal concentration (high temperature
limit), x N , is also reported.

Nuclei kind J T ge,o xe,o x N
e,o(T → ∞) Species

Fermions e e I (2I + 1)
Ze I

Ze I + Zo(I + 1)

I

2I + 1
Para

o o (I + 1)(2I + 1)
Zo(I + 1)

Ze I + Zo(I + 1)

(I + 1)

2I + 1
Ortho

Bosons e e (I + 1)(2I + 1)
Ze(I + 1)

Zo I + Ze(I + 1)

(I + 1)

2I + 1
Ortho

o o I (2I + 1)
Zo I

Zo I + Ze(I + 1)

I

2I + 1
Para

table 1, for fermions, the para/ortho states correspond to even/odd rotational levels, and vice
versa for bosons (para/ortho→odd/even). Note also that the para species corresponds to that
with the minimum g and with the lowest normal concentration x N , both for bosons and for
fermions.

As a consequence of equations (15), (16) and (20), and by noting that

∑
J0T0

∗
pJ0T0

∑
J1

· · · =




∑
J0 even

xe pe
J0

∑
T0 even

pe
T0

∑
J1 even

· · ·

+
∑
J0 odd

xo po
J0

∑
T0 odd

po
T0

∑
J1 odd

· · · , �J even

∑
J0 even

xe pe
J0

∑
T0 even

pe
T0

∑
J1 odd

· · ·

+
∑
J0 odd

xo po
J0

∑
T0 odd

po
T0

∑
J1 even

· · · , �J odd

(21)

we finally arrive at the expression of v(Q, t) allowing for a direct computation:

v(Q, t) = see

∑
J0 even

xe pe
J0

∑
J1even

eiωJ0 J1 t
∑
υ1

eiυ1ωvt α
2υ1

4υ1!
(2J1 + 1)

∑
l

C2(J1 J0l; 000)|Al,υ1 |2

+ soo

∑
J0 odd

xo po
J0

∑
J1 odd

· · · + seo

∑
J0 even

xe pe
J0

∑
J1 odd

· · ·

+ soe

∑
J0 odd

xo po
J0

∑
J1 even

· · · (22)

where the coefficients s are those defined and calculated in table 2. Note that the similar
expression derived in [19] in terms of 3 j symbols (equation (3.4) there) suffers from two
misprints: the exponent 2 at α is missing, as well as a factor 1/h̄ in the exponential function.

The specific s coefficients for H2 and D2 can be derived by using the values I = 1/2 and 1,
respectively, in the expressions of table 2. A peculiarity of H2 is that transitions between even
levels are weighted exclusively by b2

coh , while those involving a change of parity are weighted
by b2

inc only.
Equation (22) can also be rewritten in a more compact form, which is particularly suited

to computer programming, as

v(Q, t) =
∑

J0 J1υ1l

eiωJ0 J1 t eiυ1ωv t F(Q, J0, J1, υ1, l) (23)
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Table 2. The s coefficients of equation (22), according to the calculations outlined in equations (9),
(16) and (20). Expressions as a function of the nuclear spin I are shown both for fermions and
bosons.

Fermions Bosons
s (I half-integer) (I integer)

see =
∑

T0 even

pe
T0

[
4b2

coh +
b2

inc

I (I + 1)
T0(T0 + 1)

]
4b2

coh + b2
inc
(2I − 1)

I
4b2

coh + b2
inc
(2I + 3)

I + 1

seo =
∑

T0 even

pe
T0

b2
inc

[
4 − T0(T0 + 1)

I (I + 1)

]
b2

inc
(2I + 1)

I
b2

inc
(2I + 1)

I + 1

soe =
∑

T0 odd

po
T0

b2
inc

[
4 − T0(T0 + 1)

I (I + 1)

]
b2

inc
(2I + 1)

I + 1
b2

inc
(2I + 1)

I

soo =
∑

T0 odd

po
T0

[
4b2

coh +
b2

inc

I (I + 1)
T0(T0 + 1)

]
4b2

coh + b2
inc
(2I + 3)

I + 1
4b2

coh + b2
inc
(2I − 1)

I

where

F(Q, J0, J1, υ1, l) = s(J0 J1)x(J0) p
(J0)

J0

α2υ1

4υ1!
(2J1 + 1)

∑
l

C2(J1 J0l; 000)|Al,υ1 |2, (24)

and the subscripts and superscripts in brackets mean that the quantities vary, according to the
previous definitions of tables 1 and 2, with the parity of J0, or of J0 and J1.

Equation (22) (or (23)) is the generalization to harmonically vibrating molecules of
the rigid rotating molecule analogue discussed by Sears [13]. In principle, no further
approximations are required nowadays to carry out the calculation, since the Al,υ1 ’s can be
computed, to a good accuracy, by numerical integration and no expansion of the above integrals
(as was done in [19] for the case υ1 = 0) is apparently necessary. It is worth noting, however,
that great care must be taken if high values of l are involved, since the integrands become more
and more rapidly oscillating functions of η with increasing l and with approaching the upper
bound η = 1. Therefore their integration must be duly checked. Fortunately, the calculation
of the Al,υ1 ’s at high l values (l > 20) is rarely needed, since this implies the combination
of a rather high incident neutron energy and a high (>300 K) temperature of the sample
(i.e. many Stokes and anti-Stokes transitions are allowed), which is usually not the case in
most applications. At any rate, if high l values can occur, the product C2(J1 J0l; 000)|Al,υ1 |2
can be verified to be an increasingly negligible fraction of the dominant, small l, terms. In
addition, initial state probabilities further kill out such contributions and final results will not
suffer if the computation is performed by limiting the summations over l below a reasonable
(checked) value. Better examples related to this problem will be given in the following, for
the case of chlorine, since high l values can occur not only because of the temperature and
neutron energy, but mainly when rotational levels are narrowly spaced, as happens for the
heavier diatomic molecules.

To complete the basics of the diatomic case in the presence of spin correlations, we now
turn to u(Q). Due to the identity of the initial and final molecular states in equation (10), the
previously discussed selection rule (R(−) = 0 for�J even) leads in this case to the calculation
of X (+)

0 R(+)0 , with

R(+)0 = 1
2 〈J0 M0| f (η, υ1 = 0)|J0 M0〉

X (+)
0 = 〈µ1|〈T0 MT0 |2bcoh +

2binc√
I (I + 1)

(s · T )|T0 MT0 〉|µ0〉.
(25)
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The first of the above equations is obtained from equation (13) with υ1 = 0. Use of
equation (14) with J1 = J0 and of the properties [34]

∑
M0

pM0(−1)M0 C(J0 J0l; −M0 M00) = (−1)J0
δl0√

2J0 + 1
and C(J0 J00; 000) = (−1)J0

√
2J0 + 1

,

provide

∑
M0

pM0 R(+)0 = A00

2
. (26)

Concerning the spin part, through the use of raising and lowering operators for s and T ,
it is easily found that X (+)

0 = 2bcohδµ1,µ0 , and thus equation (10) reduces to

u(Q) =
∑
µ0

pµ0

∑
µ1

∣∣∣∣∑
J0T0

∗ pJ0T0

A00

2
2bcohδµ0µ1

∣∣∣∣
2

= b2
coh|A00|2. (27)

3.2. Negligible spin correlations

By performing the summation over the nuclei in the diatomic case (ν, ν ′ = 1, 2) and introducing
the internuclear distance vector r, then v(Q, t) and u(Q) in equation (7) become

v(Q, t)uncorr =
∑
u0,u1

pu0 eiωu0u1 t

[
b2

coh|〈u1|2 cos
Q · r

2
|u0〉|2

+ b2
inc

(|〈u1| eiQ·r/2|u0〉|2 + |〈u1|e−i(Q·r)/2|u0〉|2)
]

u(Q)uncorr = 4b2
coh

∣∣∣∣∑
u0

pu0〈u0| cos
Q · r

2
|u0〉

∣∣∣∣
2

. (28)

As was done in the previous subsection, a quantum mechanical treatment of rotations and
harmonic vibrations leads to

v(Q, t)uncorr =
∑

J0 J1υ1

pJ0 eiωJ0 J1 t eiυ1ωvt

[
4b2

coh

∑
M0 M1

pM0 |R(+)|2

+ b2
inc

α2υ1(2J1 + 1)

2υ1!

∑
l

C2(J1 J0l; 000)|Al,υ1 |2
]

u(Q)uncorr = 4b2
coh

∣∣∣∣∑
J0 M0

pJ0 pM0 R(+)0

∣∣∣∣
2

(29)

where definitions given in equations (12)–(15) and (25) were used, and we assumed |u〉 =
|J M〉|υ〉. Exploiting the first of equations (15), the square bracket in equation (29) turns out
to be

α2υ1 (2J1 + 1)

4υ1!

[
(4b2

coh + 2b2
inc)

∑
leven

C2(J1 J0l; 000)|Al,υ1 |2 + 2b2
inc

∑
l odd

C2(J1 J0l; 000)|Al,υ1 |2
]
.

(30)

Finally, by using a more compact form of equation (30), and remembering equations (23)
and (26), it is found that
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v(Q, t)uncorr =
∑

J0 J1υ1l

eiωJ0 J1 t eiυ1ωv t F(Q, J0, J1, υ1, l)
uncorr , u(Q)uncorr = b2

coh|A00|2

with

F(Q, J0, J1, υ1, l)
uncorr = pJ0

α2υ1(2J1 + 1)

4υ1!
2[b2

coh + b2
inc + (−1)l b2

coh]

× C2(J1 J0l; 000)|Al,υ1 |2. (31)

Thus, also in the present uncorrelated case, we derived rather general expressions for the inter-
and intramolecular cross-sections of a diatomic molecule, which represent an improvement
with respect to what is available in the literature. For instance, the intramolecular cross-
section calculated in equation (23) of [18] corresponds only to the rigid molecule case, though
modified through a Debye–Waller factor in order to account at least for zero-point vibrations.
Here no such limitations are present, and appropriate tools for the calculation in the presence of
vibrational transitions (υ1 �= 0) are given. However, in most applications of the above formulae
(equations (23) and (31)) related to reactor-based experiments, the incident thermal—or even
hot (>160 meV)—neutron energy will rarely be enough to excite vibrational transitions and,
quite often, only zero-point motion needs to be retained, by limiting the calculations to the
υ1 = 0 case. This does not hold in connection with pulsed source time-of-flight diffraction
measurements, where such models, due to the wide range of energies (up to a few electron
volts) composing the incident polychromatic beam, turn out to be inapplicable.

4. Spherical-top molecules: uncorrelated-spin case

We now consider the calculation of the inter- and intramolecular cross-sections, u(Q) and
v(Q, t), for spherical top molecules of the kind Y X4, with negligible spin correlations. Starting
from equation (7), and assuming negligible rotation–vibration coupling, we once again adopt
the factorization |u〉 = |J M K 〉|υ〉 into rotational and vibrational eigenstates, to write

v(Q, t)uncorr =
∑
ν,ν′

aνν′
∑

J0,M0,K0,υ0

pJ0 pM0 pK0 pυ0

∑
J1,M1,K1,υ1

eiωJ0 J1 t

× 〈J1 M1 K1| eiQ·Req
ν′ 〈υ1| eiQ·xν′ (t)|υ0〉|J0 M0 K0〉

× 〈J0 M0 K0|e−iQ·Req
ν 〈υ0|e−iQ·xν |υ1〉|J1 M1 K1〉

u(Q)uncorr =
∣∣∣∣

n∑
ν=1

bνcoh

∑
J0,M0,K0,υ0

pJ0 pM0 pK0 pυ0〈J0 M0 K0| eiQ·Req
ν 〈υ0| eiQ·xν |υ0〉|J0 M0 K0〉

∣∣∣∣
2

(32)

where aνν′ = bνcohbν
′

coh + (bνinc)
2δν,ν′ , rν was expressed as the sum of the equilibrium position

vector with respect to the CM and the displacement vector from equilibrium due to vibrations
(rν = R

eq
ν + xν), and, finally, the proper rotational structure of a spherical-top molecule,

degenerate both with respect to a direction (z) in fixed space (individuated by M , as usual) and
to a fixed direction (ζ ) in the molecule reference frame (individuated by the quantum number
K ), was taken into account [17, 32]. It is worth remembering, in this last respect, that the
rotational eigenfunctions of a spherical-top molecule are of the form (where � = (α, β, γ )

are the Euler angles and D’s are the rotation matrices [17])

|J M K 〉 =
√

2J + 1

8π2
D(J )

M K (�),

and that the operators J2, Jz and Jζ commute, with eigenvalues over the |J M K 〉 states given
by J (J + 1),M and K , respectively. Consequently, a given rotational level J , whose energy
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takes the usual form in terms of the rotational constant B , has a (2J + 1)2-fold degeneracy, if
spin correlations are neglected [32].

Note that, for convenience of subsequent treatment, the time-dependent Heisenberg
representation of the operator xν′ has been re-introduced in the first of equations (32).
Moreover, the vibrational states of the molecule, still globally indicated as |υ〉 in equation (32),
must now be thought of as characterized by the various occupation numbers corresponding to
the λ normal modes of vibration of the molecule, i.e. |υ〉 = |n1 · · · nλ〉, where λ = 9 for Y X4

molecules [4]. As before, the ground vibrational state is assumed as initial condition (nλ = 0
for each λ, initially).

Previous treatments of the—thermal and orientation—average of the vibrational part
in the computation of the double-differential cross-section of spherical-top molecules often
refer to the (quite common) case in which neutrons are unable to excite vibrational
transitions [5, 6, 8, 11, 15–17]. In this picture, matrix elements involve only zero-point
vibrations, and their average can be effectively represented by Debye–Waller factors. The latter
were calculated by Pope for Y X4 molecules [4], although never employed in their complete
version in all subsequent papers on methane (including [26]). Despite the difficulties related to
the interpretation of such a complex (and unavoidably misprint-abundant) paper [4], we shall
try to comment and make use, in the following, of the complete set of Debye–Waller factors
provided by Pope for Y X4 molecules. This is done in the attempt of improving, for instance,
the level of accuracy of nowadays possible CH4/CD4 calculations in the case of zero-point
vibrations, also providing the reader with verified and user-friendly coefficients.

However, a step forward can be proposed in order to account, at least, for vibrational
transitions involving the single (i.e. with a final occupation number equal to 1) excitation of one
mode. In other words, processes known as ‘one-phonon scattering’ in neutron spectroscopy on
solids can be treated quite smoothly in the case of a fluid composed of spherical tops,when ‘one-
phonon’ vibrational transitions of the kind |υ0〉 = |00 . . . 00 . . . 0〉 → |υ1〉 = |00 . . . 10 . . . 0〉
are considered, and the incident energy is anyway not enough to excite more than one mode.
In complete analogy with the case of solids, the displacement vector xν′(t) can be expressed
as the superposition of the normal modes of the molecule according to

xν′(t) =
∑
λ

√
h̄

2mν′ωλ
[eν′λe−iωλ t aλ + e∗

ν′λ eiωλt a+
λ] (33)

whereωλ is the frequency of theλth mode and eν′λ is the eigenvector of this mode for nucleus ν ′
of mass mν′ . The operators aλ and a+

λ destroy and create, respectively, a quantum of harmonic
oscillator in the λth mode. By using equation (33), together with the well-known properties of
aλ and a+

λ , and the relation eAeB = eA+B+1/2[A,B] for the exponential of operators, the generic
vibrational matrix element can be written as

〈υ1| eiQ·xν′ (t)|0〉 = 〈n1,1 · · · nλ,1|
∏
λ

exp[iαν′λQ · (eν′λe
−iωλt aλ + e∗

ν′λ eiωλt a+
λ)]|0 . . . 0〉

= exp

(
i
∑
λ

nλ,1ωλt

) ∏
λ

exp(−βν′λ)
(iαν′λQ · e∗

ν′λ)
nλ,1√

nλ,1!
(34)

where the Taylor expansion was also used for the exponentials and we defined

αν′λ =
√

h̄

2mν′ωλ

βν′λ = α2
ν′λ
2

|Q · eν′λ|2.
(35)
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A reasonable estimate of v(Q, t) can then be derived by separating the orientation average
of the time-independent vibrational matrix elements, i.e. 〈〈υ1| eiQ·xν′ |0〉〈0|e−iQ·xν |υ1〉〉�, from
the rotational part in equation (32) (the time dependence depicted in equation (34) will not
be forgotten in the following). In order to simplify things, evaluation of the above average,
defined here as 〈zνν′ 〉, can be limited to elastic (all nλ,1 = 0) and lowest-order ‘one-phonon’
(only one nλ,1 = 1) scattering only. By means of equation (34), it is found in this case that

〈zνν′ 〉 =




∏
λ

e〈−βν′λ−βνλ〉, if nλ = 0

∏
λ

e〈−βν′λ−βνλ〉(αν′λανλ)
eν′λ · eνλ

3
Q2, if nλ = 1.

(36)

Commonly used approximations are hidden in the result of equation (36): the average of
a product was taken as a product of averages, and the average of exponentials were taken as
exponentials of averages. The elastic scattering case (zero-point motions only) in equation (36)
can be recognized to lead to the well-known definition of Debye–Waller coefficients γνν′ [17]:

∏
λ

e〈−βν′λ−βνλ〉 = exp

[
−

∑
λ

h̄Q2

12ωλ

(
e2
νλ

mν

+
e2
ν′λ

mν′

)]
= exp(−Q2γνν′ ), (37)

while the second of equations (36) gives a tool for double neutron cross-section calculations
when one mode can be excited to lowest order.

Carrying out the summation over nuclei in equation (32), and remembering that there are
four equal nuclei of type X and one nucleus Y (whose equilibrium position coincides with the
CM of the molecule) it is found that v(Q, t) can be written as

v(Q, t)uncorr =
∑
{nλ,1}

∑
J0,J1

pJ0 exp(iωJ0 J1 t) exp

(
i
∑
λ

nλ,1ωλt

)

×
[

aX XχX X

4∑
i=1

〈zXi Xi 〉 + aX X ′χX X ′
4∑

i, j=1
i �= j

〈zXi X j 〉

+ 2aY XχY X

4∑
i=1

〈zY Xi 〉 + aY YχY Y 〈zY Y 〉
]

(38)

which, in the case of zero-point vibrations only, reduces to

v(Q, t)uncorr =
∑
J0,J1

pJ0 eiωJ0 J1 t (4aX X e−Q2γX XχX X + 12aX X ′e−Q2γX X ′χX X ′

+ 8aY X e−Q2γY XχY X + aY Y e−Q2γY Y χY Y ) (39)

where

aX X = b2
coh X + b2

inc X

aY X = bcoh Y bcoh X

aX X ′ = b2
coh X

aY Y = b2
coh Y + b2

inc Y

(40)
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and

χX X =
∑

M0,M1

pM0

∑
K0,K1

pK0 |〈J1 M1 K1| eiQ·Req
X |J0 M0 K0〉|2

χY X =
∑

M0,M1

pM0

∑
K0,K1

pK0〈J0 M0 K0|e−iQ·Req
Y |J1 M1 K1〉〈J1 M1 K1| eiQ·Req

X |J0 M0 K0〉

χX X ′ =
∑

M0,M1

pM0

∑
K0,K1

pK0〈J0 M0 K0|e−iQ·Req
X |J1 M1 K1〉〈J1 M1 K1| eiQ·Req

X ′ |J0 M0 K0〉

χY Y =
∑

M0,M1

pM0

∑
K0,K1

pK0 |〈J1 M1 K1| eiQ·Req
Y |J0 M0 K0〉|2.

(41)

To proceed with the calculation one needs to evaluate the generic rotational matrix element
given by

〈J1 M1 K1|eiQ·Req
ν |J0 M0 K0〉 =

∫
d�

√
(2J1 + 1)(2J0 + 1)

8π2
D(J1)∗

M1 K1
eiQ·Req

ν D(J0)

M0 K0
(42)

where, using the results of [33, appendices B and C], it can be shown that

eiQ·Req
ν = 4π

∞∑
l=0

l∑
n=−l

il jl(Q Req
ν )Y

n∗
l (�ν,�ν)

l∑
n′=−l

Y n′
l (θQ, ϕQ)D

l
n′n(α, β, γ ). (43)

In equation (43), the spherical Bessel functions jl were introduced, as well as the spherical
harmonics Y n

l . The angular coordinates of R
eq
ν and Q—marked by the subscript ν and Q,

respectively—are (θ, ϕ) in fixed space and (�,�) in the molecule reference frame. By
using (43), equation (42) becomes

〈J1 M1 K1| eiQ·Req
ν |J0 M0 K0〉 =

√
(2J1 + 1)(2J0 + 1)

2π

×
∞∑

l=0

l∑
n,n′=−l

il jl(Q Req
ν )Y

n∗
l (�ν,�ν)Y

n′
l (θQ, ϕQ)

∫
d� D(J1)∗

M1 K1
Dl

n′n D(J0)
M0 K0

.

(44)

Various known results [33, 34, appendices] can be used to manipulate the integral in
equation (44), which, in terms of the 3 j symbols, turns out to be

∫
d� D(J1)∗

M1 K1
Dl

n′n D(J0)

M0 K0
= 8π2(−1)M1−K1

(
J0 J1 l
M0 −M1 n′

) (
J0 J1 l
K0 −K1 n

)
. (45)

The expressions in equation (41), can then be evaluated using equations (42)–(45) and the
orthogonality relations [33]:

∑
M0 M1

(
J0 J1 l
M0 −M1 n′

) (
J0 J1 l1

M0 −M1 n′
1

)
= �(J0 J1l)

2l + 1
δll1δn′n′

1

∑
K0 K1

(
J0 J1 l
K0 −K1 n

) (
J0 J1 l1

K0 −K1 n1

)
= �(J0 J1l)

2l + 1
δll1δnn1

�(J0 J1l) = 1 if |J0 − J1| < l < J0 + J1; 0 otherwise.

(46)
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Doing so, and remembering that pM0 pK0 = (2J0 + 1)−2, we derive

χX X = 2J1 + 1

2J0 + 1

J0+J1∑
l=|J0−J1|

j 2
l (Q Req

X )

χY X = 2J1 + 1

2J0 + 1
j0(Q Req

X )δJ0,J1

χX X ′ = 2J1 + 1

2J0 + 1

J0+J1∑
l=|J0−J1|

j 2
l (Q Req

X )Pl(cosψX X ′)

χY Y = 2J1 + 1

2J0 + 1
δJ0,J1 .

(47)

The symmetry of the molecule allows one to know ψX X ′ , i.e. the angle between R
eq
X and R

eq
X ′ .

In particular, by simple geometrical considerations, it results in cosψX X ′ = −1/3.
For comparison with other papers, it is useful to rewrite the self part of the double-

differential cross-section (equation (7)). In this case, it is

k0

k1

(
d2σ

d� dω

)uncorr

s

=
∑
{nλ,1}

∑
J0 J1

pJ0 Ss

(
Q, ω − ωJ0 J1 −

∑
λ

nλ,1ωλ

)
2J1 + 1

2J0 + 1

×
{[

aY Y 〈zY Y 〉 + 2aY X

4∑
i=1

〈zY Xi 〉 j0(Q Req
X )

]
δJ0 J1

+
∑

l

j 2
l (Q Req

X )

[
aX X

4∑
i=1

〈zXi Xi 〉 + aX X ′
4∑

i, j=1
i �= j

〈zXi X j 〉Pl(− 1
3 )

]}
(48)

where equations (5), (38) and (47) were used. In equation (48), the first summation symbol
runs over the possible sets of occupation numbers {nλ,1} compatible with the incident energy
and with the hypothesis made before equation (36).

Note that, by comparison with equations (11)–(16) of [8], here a factor 2 does not result
in the rotational part of both the X X ′ term and the Y X term. The same was found and
applied [35] in the calculations of [26]. Moreover, apart from the generalization proposed here
for the Debye–Waller factors, the X X ′ term reported in equation (48) is the general and quite
simple expression substituting the rather misleading and unnecessarily approximate one of [8]
(after equation (13), there), still used in recent calculations [26, 35].

We finally remember that the probability pJ0 for a spherical top molecule is [32]

pJ0 = e−βE J0 (2J0 + 1)2∑
J0

e−βE J0 (2J0 + 1)2
(49)

which represents the probability of a given rotational level (J ), independent of the values
of M and K . The above expression should thus be used in equations (38), (39) or (48), in
order to correctly perform the calculations. Differently, Marshall and Lovesey [p 458 and ff]
[17] report and use, on the whole, another formula. Even by carefully taking into account
the various differences related to the adopted notation, we always find a mismatching result,
leading us to think of a misprint in the above [17] concerning equation 12.78 there.

Turning to the calculation of the distinct term, u(Q), it is convenient to write the square
modulus in equation (32) as

u(Q)uncorr =
n∑

ν,ν′=1

bνcohbν
′

coh A(ν)B(ν ′) (50)
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with

A(ν)B(ν ′) = e−γνν′ Q2 ∑
J0 M0 K0

pJ0 pM0 pK0〈J0 M0 K0| eiQ·Req
ν |J0 M0 K0〉

×
∑

J ′
0 M ′

0 K ′
0

pJ ′
0
pM ′

0
pK ′

0
〈J ′

0 M ′
0 K ′

0|e−iQ·Req
ν′ |J ′

0 M ′
0 K ′

0〉 (51)

where the only admitted initial and final vibrational levels (υ0 = υ1 = 0) for the calculation of
u(Q)were explicitly considered, and consequently only the first of equations (36) was used for
the average of the vibrational part. By adopting the notation of equation (37) for the Debye–
Waller factors in this special case, and by noting that equation (42) reduces to j0(Q Req

ν ) when
the initial and final states coincide, equation (50) becomes

u(Q) = b2
coh X j 2

0 (Q Req
X )(4e−γX X Q2

+ 12e−γX X ′ Q2
) + 8bcoh X bcoh Y e−γY X Q2

j0(Q Req
X )

+ b2
coh Y e−γY Y Q2

(52)

which is—to our knowledge—derived here for the first time, and generalizes the typically used
expression [e.g. [15, 22] ] for a rigid molecule.

Finally, to make practical calculations of u(Q) and v(Q, t) possible, an evaluation of the
Debye–Waller coefficients (in the elastic case) or of the sums

∑ 〈zνν′ 〉 in equation (38) (in the
inelastic case) for Y X4 molecules is needed.

If only zero-point vibrations can occur, one can refer to the Debye–Waller coefficients
given in table 3, both for methane and its heavy twin. The treatment outlined by Pope [4]
was followed here to calculate the reported values which, in the case of CH4, slightly differ
from the only ones reported by Griffing [8] (following Pope [4]) in the X X and Y Y case.
This is partly due to the use here of the CH4 mode frequencies provided by Herzberg [32],
rather than those reported in [4]. Moreover, Rosenthal’s method [36] for the force constants’
determination was adopted here, both for CH4 and CD4. Another method was also reported
by Pope [4] and [13] therein, and used there to carry out example calculations for methane.
The way of deriving the force constants from available mode frequencies, and consequent
slightly different values for the resulting Debye–Waller coefficients, is, however, not vital. In
fact, we believe that differences in using one set or the other should anyway have a marginal
effect on the calculated cross-sections, since both ways lead to a comparable value, for all the
coefficients. These conclusions can be verified by a careful use of [4], with the warning that the
third of equations (4.3) and most of the expressions in equation (6.1) of the quoted paper are
wrong. By the way, it is worth mentioning that the values for the Debye–Waller coefficients
of CD4 are—to our knowledge—calculated here for the first time.

The aνν′ data also shown in table 3, and equations (48) and (52), explain why the X X ′ and
YX terms were neglected in previous calculations for CH4 [8]. To a better level of accuracy,
the authors of [26] considered the contribution of X X ′ and Y X terms, though calculating
the corresponding Debye–Waller coefficients of CH4 with the approximation (see table 3)
δX = 0 [35], which corresponds to neglecting the anisotropic component in the equivalent
oscillator treated by Pope. In contrast to methane, it is seen in table 3 that all the terms
are equally important in the case of CD4, as a consequence of the very different coherent to
incoherent ratios for the two hydrogen isotopes.

In case vibrational modes can be excited by the neutrons, the sums
∑ 〈zνν′ 〉 in equation (38)

can be evaluated by using equation (36) and the set of eigenvectors eνλ provided by Pope for
each nucleus and each of the possible nine modes of the Y X4 molecule (with the normalization∑

ν e2
νλ = 1 for each mode).



Topical Review R793

Table 3. Debye–Waller coefficients for CH4 and CD4, calculated here by following the treatment
proposed by Pope [4] in the case of zero-point motion. Numerical values of the cross-sections
terms of equation (40) for the two systems are also reported.

Debye–Waller coefficient CH4 CD4

(zero-point vibrations) [4] (present work) (present work)

γX = 2.232 × 10−3 Å2 γX = 4.014 × 10−3 Å2

δX = 9.445 × 10−4 Å2 δX = 5.385 × 10−4 Å2

γY = 0.8965 × 10−4 Å2 γY = 2.027 × 10−4 Å2

γX X = 2(γX + δX ) 6.353 × 10−3 Å2 9.106 × 10−3 Å2

γX X ′ = 2(γX + 2δX ) 8.242 × 10−3 Å2 10.183 × 10−3 Å2

γY X = γY + γX + 3δX 5.155 × 10−3 Å2 5.833 × 10−3 Å2

γY Y = 2γY 1.793 × 10−4 Å2 4.054 × 10−4 Å2

Cross-section terms of equation (40)
aX X 6.5277 b 0.6082 b
aY X −0.2488 b 0.4437 b
aX X ′ 0.1399 b 0.4450 b
aY Y 0.4424 b 0.4424 b

5. Review of the most common applications

The expressions derived up to now for the inter- and intramolecular cross-sections surely
represent the first, basic, step for calculations of the double-differential cross-section according
to equations (4) and (5), which, as shown in equations (23) and (24), (31) and (38) or (39), can
generally be rewritten as

d2σ

d� dω
= k1

k0

[
u(Q)Sd (Q, ω) +

∑
J0 J1υ1l

F(Q, J0, J1, υ1, l)Ss(Q, ω − ωJ0 J1 − ωυ0υ1)

]
(53)

with F taking different expressions according to the specific case. While the discussion of the
model calculations using equation (53) for possible comparisons with the results of inelastic
neutron scattering experiments will be postponed, the more important (i.e. ‘application-rich’)
case of diffraction from molecular fluids is addressed now. To this aim, it is useful to remember
that the single-scattering intensity measured in a neutron diffraction experiment as a function
of the scattering angle θ is (see, e.g., [21–24])

I (θ) = �N��
∫ ω0

−∞
θ=const

ε(k1)
d2σ

d� dω
dω (54)

with ε the energy-dependentdetector efficiency and� the incident neutron flux. Equation (54)
reflects the fact that neutrons recorded, at each given angle, in a diffraction measurement are
not discriminated in energy. Scattering events with all possible values of the exchanged
energy will thus contribute to the measured signal at θ , following the sample scattering law
S(Q, ω). If each scattering event were an exactly elastic process, then the diffraction intensity
would be proportional to dσ/d� = ∫ ω0−∞

θ=const
(d2σ/d� dω)dω and would provide a ‘direct’

measure of the sought-for static structure factor. This can be deduced by noting that for elastic
scattering (k1 = k0) the general relationship Q = k0[2 − (ω/ω0)− 2(1 − ω/ω0)

1/2 cos θ ]1/2

reduces to Q = Qel = 2k0 sin(θ/2), thus making the condition θ = constant equivalent
to Q = Qel = constant; and the combination of equations (54) and (4) gives, in the static
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approximation [37], i.e. for ω /ω0  1:

I‘el’(θ) = �Nε(k0)��

∫ +∞

−∞
Q=const

dω
d2σ

d� dω

= �Nε(k0)��{u(Qel)[SCM (Qel)− 1] + v(Qel , 0)} (55)

where the CM static structure factor of a molecular system, SCM (Q) = ∫ +∞−∞
Q=const

S(Q, ω) dω =
1 + Fd(Q, 0) = F(Q, 0), was introduced. Note that the static structure factor is nothing but
the zeroth frequency moment of S(Q, ω). In equation (55), the subscript ‘el’ is intended to
identify the intensity that would be measured in the ideal case of an elastic scatterer (indeed,
the static approximation itself corresponds to ‘elastic’ scattering conditions).

It is well known that there is no elastic scattering from a liquid, as a consequence of the
absence of correlations at infinite time. Thus, although the main contribution to the intensity
in a diffraction experiment originates from quasi-elastic events with frequencies around the
main peak of S(Q, ω), inelastic scattering events nevertheless influence the diffraction pattern
recorded from a liquid, thus corrupting the direct relation between I (θ) and SCM (Q), which
only holds for purely (ideal) elastic scatterers, as expressed by equation (55). It is clear also
that the lighter the molecule is, the stronger is the effect of inelastic scattering processes.

In order to extract the static structure factor from neutron diffraction data, one therefore
needs a way to derive from the measured intensity the limiting behaviour depicted in
equation (55). Such a procedure is often addressed as ‘inelastic correction’. To this aim,
it is immediately useful to identify an additive inelastic correction with the quantity by which
equation (54) differs from equation (55), i.e.

I (θ)− I‘el’(θ) =
[
�N��

∫ ω0

−∞
θ=const

ε(k1)
d2σ

d� dω
dω− I‘el’(θ)

]
≡ �N��ε(k0)P(θ), (56)

which also allows one to rewrite equation (54) as

I (θ) = �Nε(k0)��{u(Qel)[SCM (Qel)− 1] + v(Qel , 0) + P(Qel )}. (57)

In equations (56) and (57) the correction function P was defined in units of barn sr−1. A
well-known method for the calculation of this correction was first proposed by Placzek [38]
(that is also the reason why it is traditionally named P , meaning ‘Placzek correction’) and it is
based on the series expansion of P in the frequency moments (of order higher than the zeroth
one) of S(Q, ω), each calculated at Q = Qel . An alternative approach for estimating P is to
take advantage of the expression given in square brackets of equation (56), since its evaluation
can be entrusted to the use of reasonable models for the (unknown) double-differential cross-
section of the sample under study, as will be discussed in the following. Here, it might be
helpful to remember that the use of models is anyway required even in the Placzek method,
since only the first frequency moment of the dynamic structure factor is exactly known, while
higher-order moments depend on S(Q, ω) itself. Further, the Placzek approach is expected to
become inefficient as the mass of the system is reduced, because of the high number of terms
in the moments expansion that should be retained.

On the whole, equations (54)–(57) immediately clarify why the model calculations
treated in the previous sections represent an unavoidable ingredient in the analysis of neutron
diffraction data from diatomic and other molecular fluids. In particular, in order to extract the
sought-for function SCM (Q) from the measured intensity, one needs reasonable estimates for:

(i) the static inter- and intramolecular cross-sections, u(Q) and v(Q, 0);
(ii) the inelastic correction P(Q), which can be evaluated by taking advantage of the discussed

modelling of the double-differential cross-section;
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(iii) the normalization factor�ε(k0)��, to be determined by comparing the true experimental
output and the calculated differential cross-section, for a ‘reference’ sample.

In this last respect, eligible standards are those whose scattering response can be modelled
to a high degree of accuracy, and which ensure, at the same time, minor alteration of the
geometrical set-up when passing from the measurements on the sample of interest to those on
the calibration sample.

The next subsections treat the above three basic applications.

5.1. The molecular self and distinct cross-sections in the static case

As was shown from equation (4) onwards, the distinct molecular term, u(Q), is time-
independent. As a consequence, it modulates, unaltered, both the static and dynamic
intermolecular structure (SCM (Q) and Sd(Q, ω)). The situation is different with the self
molecular term. It is important to observe that, in the static version (t = 0) of equations (9),
(28) and (32), one is mathematically allowed to use the completeness relation over the final
molecular states. A consequence is that exact summation over the initial states, of appropriate
probability, turns out in these conditions to be possible and leads to ‘finite’ expressions for
the self molecular term in the various cases, which, however, correspond to a sum over all
transitions. For this reason we will indicate such expressions with vtot (Q, 0). In particular,
for diatomic molecules it is found

vtot (Q, 0) = 2(b2
coh + b2

inc) + (b2
coh − Rb2

inc)

[∫ 1

−1
dη e2iβηe−2α2η2

]
, (58)

with R = 0 and 1
2I (1 − xo/x N

o ), when spin correlations are, respectively, negligible or
not, while for spherical top molecules with negligible spin correlations, the calculation of
〈〈0| eiQ·xν′ e−iQ·xν |0〉〉� and of the rotational part, leads to

vtot (Q, 0) = 4aX X + aY Y + 8aY X e−ξY X Q2
j0(Q Req

X ) + 12aX X ′e−ξX X ′ Q2
j0
(

Q
√

8
3 Req

X

)
(59)

where

ξνν′ =
∑
λ

h̄

12ωλ

(
e2
νλ

mν

+
e2
ν′λ

mν′
− 2eν′λ · eνλ√

mν′ mν

)
,

which vanishes if ν = ν ′.
Though vtot (Qel , 0) is often employed in equations (55) and (57) in place of v(Qel , 0), it is

clear that care must be taken in the use of equations (58) or (59) for experimental data analysis
whenever the thermodynamic conditions of the fluid and the neutron incident energy are not
able to activate some of the dominant transitions. In all those cases in which a limited number
of transitions is enabled (because of temperature, neutron energy or both) a better accuracy is
assured by using the partial sum obtained by specific calculations of (see, e.g., equation (23)
at t = 0)

v(Qel , 0) =
∑

J0 J1υ1l

F(Qel , J0, J1, υ1, l) (60)

over the possible transitions only, strictly depending on the (known) experimental conditions.
Figures 1 and 2 clearly show that in rather common experimental conditions important

differences may arise between v and vtot , especially for the hydrogen compounds (H2 and
CH4) and, generally, with increasing wavevector transfer. This last feature is a consequence
of the increasing importance of high l terms (related to Bessel or similar functions) at high Q
values, which do not contribute to v, unless many high-order transitions are enabled. As one
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Figure 1. Example calculations of v(Qel , 0) and u(Qel ) for methane and deuteromethane
in different experimental conditions. The full curve corresponds to vtot (Qel , 0) according to
equation (59), while the chain curve is v(Qel , 0), resulting from the sum in equation (60) over the
admitted transitions at a given temperature T and neutron energy E0 (see also equation (48)). The
broken curve is u(Qel), derived from equation (52).

would expect, at given Q and T , differences are more pronounced at lower incident energies,
as a result of the smaller number of transitions excited by the neutrons (see, e.g., the D2 case
in figure 2) and contributing to v. The same consideration would apply at lower temperatures,
at given E0 and Q (because most molecules lie initially only in the lowest rotational levels).
A case of particular importance is described in detail in figure 2, in connection with the para-
hydrogen case at liquid temperature. There, v not only differs markedly from vtot , but this
difference changes dramatically when E0 is below the activation threshold of the first rotational
transition (J0 = 0 → J1 = 1). In such conditions, in fact, the effects of the huge incoherent
cross section of hydrogen are frozen, while only the very small coherent cross-section is left to
weigh the various terms in v. Finally, it is clear, from figures 1 and 2, how the intermolecular
cross-section, u(Q), is far smaller than the intramolecular one, whenever hydrogen comes
in. This obstacle, added to other difficulties, prevented neutron experimentalists to access
the static structure of H2 for a long time, until very recently [25]. An exception occurs for
para-hydrogen at E0 < 15 meV, where, though not shown for clarity in figure 2, u(Q) is
found to be comparable with the plotted v. Conversely, when deuterium is involved, the self
and distinct cross sections are of the same order of magnitude, at least at low and intermediate
Q. One of the main features of u(Q)—in all systems—is, however, its vanishing amplitude at
finite Q values. The zeros of u(Q) unavoidably prevent one to extract the CM structure factor
in the vicinity of such Q values (see equation (57)). Fortunately, these often occur at high
enough Q, so that the main features of the intermolecular structure can still be derived from
the diffraction patterns (for comparison, a typical value for the Q position of the maximum in
the static structure factor of molecules is 20 nm−1).
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Figure 2. Example calculations of v(Qel , 0) and u(Qel ) for para-hydrogen and normal deuterium
in different experimental conditions. The full curve corresponds to vtot (Qel , 0) according to
equation (58), while the chain curve is v(Qel , 0), resulting from the sum in equation (60) over the
possible transitions at a given temperature T and neutron energy E0 (see also equation (24)). The
broken curve is u(Qel), derived from equation (27). In the case of para-H2 with E0 < 15 meV,
u(Q) is not shown for the sake of picture clarity.

5.2. Evaluating the inelastic correction for some molecular fluids

As suggested previously, one possible way for estimating the correction function P in
equation (57) relies on the assumption of a model for the double-differential cross-section of
the sample and the evaluation of the corresponding quantity in square brackets in equation (56).
In reactor-based diffraction experiments, such as those we are dealing with here, the inelastic
scattering mainly affects the high-Q part of the diffraction pattern. At large Q values, the
intermolecular structure decays and the system response tends to the perfect gas one, with
SCM (Q) ≈ 1. It is then reasonable, in evaluating the inelasticity correction, to assume the
simplest model available for the CM dynamics, i.e. the ideal gas (i.g.) one, which corresponds
to

Si.g.
d (Q, ω) = 0

and

Si.g.
s (Q, ω) =

√
M

2πkB T Q2
exp

[
− M

2kBT Q2

(
ω − h̄Q2

2M

)2]
. (61)

When dealing with diffraction on diatomic and spherical-top molecules, it is therefore possible
to exploit the expressions given before for the double-differential cross-section and, through
the use of the above modelling of S(Q, ω), calculate the inelasticity correction for the system
of interest as if it were an ideal gas of (rotating and vibrating) molecules. In this case, one
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obtains (see equation (56))

[
�N��

∫ ω0

−∞
θ=const

ε(k1)
d2σ

d� dω
dω − I‘el’(θ)

]
i.g.

= �N��ε(k0)P(Qel)i.g. (62)

with

P(Qel )i.g. =
∫ ω0

−∞
θ=const

ε(k1)

ε(k0)

(
d2σ

d� dω

)
i.g.

dω − v(Qel , 0), (63)

where equation (55) for an ideal molecular gas (SCM(Q) = 1)was used, and the subscript at the
double differential cross-section means that calculations are carried out by inserting the ideal
gas S(Q, ω) (equation (61)), appropriately shifted in frequency, into the general expression
given in equation (53).

It has been shown that such a simple approach accounts fairly well for the inelastic
scattering correction even in the case of diffraction measurements on molecular liquids as
light as deuterium [21]. Figure 3 reports, for example, the calculated P(Qel)i.g. for three
realistic cases: (a) liquid deuterium at 20.7 K and E0 = 162.3 meV [21]; (b) gaseous CD4 at
180 K and E0 = 162.3 meV [23]; (c) gaseous chlorine at 405 K and E0 = 13.9 meV [39].
For the evaluation of the inelasticity correction of Cl2, the diatomic uncorrelated-spin picture
discussed in subsection 3.2 (which also neglects anisotropic components in the intermolecular
interaction) was adopted.

In figure 3, calculations are compared with the ‘effective’ inelastic correction, Pe f f ,
resulting from an alternative data treatment based on fits of equation (57) to the high-Q portion
of the experimental intensities (see, e.g., [21, 23] for details). In the case of chlorine (which
is the heaviest system considered in the present examples), only one curve is shown, since the
calculated and effective corrections were found to coincide. For the CD4 example, the incident
energy was such to enable ‘one-phonon’ vibrational transitions (the energy of the ground
vibrational state of CD4 is [4, 32]

∑
λ

1
2 h̄ωλ = 865.07 meV). In particular, with 160 meV

incident neutrons, the two (degenerate) modes of frequency 1054 cm−1 (130.68 meV) and the
three (degenerate) modes of frequency 996 cm−1 (123.49 meV) can be excited. Therefore the
calculations were performed using the treatment proposed in section 4, with five possible final
sets {nλ,1} plus that corresponding to the ground state. For comparison, the calculation in the
case of zero-point vibrations only (P(0)) is also shown.

Both in the case of deuterium and of deuteromethane, the effective correction is less
structured than the calculated one and turns out to have a different intensity. It must be noted,
however, that the way in which Pe f f is usually derived does not ensure a full independence of
this quantity from other corrections of the diffraction data, such as multiple scattering (which
is often evaluated in the elastic approximation) and background subtraction. Therefore, the
resulting Pe f f might compensate also for residual effects which do not originate from single
inelastic scattering. On the other hand, it is important to remember that a rather accurate
knowledge of the experimental detector efficiency,ε(k1), would be required in order to carry out
realistic calculations of equation (63). Unfortunately, it is nearly impossible to achieve detailed
information on the true detector performance, and calculations can only rely on an approximate
evaluation of it, based on the well-known expression ε(k1) = 1−exp[−a(k0)k0/k1], with a(k0)

being an absorption coefficient depending on the specific detector. Given such uncertainties,
the results of figure 3 are, on the whole, satisfactory, since the correct order of magnitude for
the inelastic correction is derived from the calculations.
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Figure 3. Example calculations of P(Qel )i.g. according to equation (63) for D2, CD4 and Cl2.
The calculated inelastic correction (broken) is compared with the effective one (full) derived by
different data analysis (see the text). In the case of chlorine, calculations are found to provide the
effective correction required, without the need of modifications. In that of CD4, comparison is
also made between P(0) (chain), accounting for zero-point motions only, and P including also the
‘one-phonon’ scattering events (see the text) enabled by the high incident energy of the present
example.
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Figure 4. The differential cross-section � of low-density hydrogen at room temperature and
13.9 meV incident energy. Experimental data collected on the G.4.1 diffractometer of LLB, after
vanadium normalization (circles with error bars) and corresponding calculation based on the ideal
gas model for the translational dynamics (full curve).

5.3. Neutron diffraction data normalization

The use of incoherent molecular gases, such as H2 and CH4, for neutron data calibration
was introduced quite recently [26–28], with the aim of minimizing possible errors in the
determination of the instrumental factor �ε(k0)��, mainly originating from geometrical
differences between a fluid sample and the standard (vanadium, typically). The clear advantage,
from the experimental side, lies in the possibility of using the same container both for the sample
and for the reference gas and, generally, without the need to remove the container from its
position in the beam.

This method is applied by recording the diffraction intensity from a very low-density
sample of hydrogen or methane (i.e. close to ideal gas conditions), and by comparing it with the
computed differential cross-section, following the models described in the previous sections 3
and 4 when the ideal gas S(Q, ω) is assumed as the CM scattering law. In formulae (R = H2

or CH4)

�ε(k0)�� = I (θ)expt
R

NR
∫ ω0

−∞
θ=const

ε(k1)

ε(k0)

(
d2σ

d� dω

)
R,i.g.

dω
. (64)

For ease of notation, �R will indicate, in the following, the frequency integral at the denominator
of equation (64).

As an example of the results attainable by this joint use of experiment and calculation, it
is significant to compare (see figure 4) the calculated �H2 , with its experimental equivalent,
derived by vanadium normalization of the single scattering intensity from a dilute hydrogen
sample. Experimental hydrogen data refer, in particular, to a room temperature measurement
performed on the G.4.1 diffractometer of Laboratoire Leon Brillouin (LLB), with E0 =
13.9 meV.
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Figure 5. The differential cross-section of low-density hydrogen and methane at room temperature
and 4.9 meV incident energy. Calculations of � (as in equation (64)) were performed using both the
nominal detector efficiency (49% at 4.9 meV, broken curves) and by assuming a higher performance
(60% at 4.9 meV, full curves). Dots (for methane) and circles (for hydrogen) represent the effective
�—derived from the experimental intensities—able to give full agreement between the low-Q
extrapolation of the measured S(Q) and the S(0) compressibility limit of a Kr sample at room
temperature and number density 4.3 nm−3 [28].

The agreement between data and calculations in figure 4 is, indeed, very good. The shape,
in particular, of the experimental differential cross-section (rising quite steeply with decreasing
scattering angle) does not seem to support the widespread opinion regarding the unsuitability
of ideal gas calculations for the representation of scattering data on fluid samples, especially
at low incident energies and small angles (see, e.g., [18]). As a matter of fact, experiment and
calculation give, in this case, nearly the same result, though with a very slight, but detectable,
overestimate of the experiment by calculations when θ is decreased. Differences are anyway
well within the experimental errors—at least at these intermediate incident neutron energies—
which is important evidence, still missing up to now.

The accuracy of the calibration technique discussed here can be estimated from the results
of figure 5, which refer to a small-angle experiment on a gaseous Kr sample [28]. There, the
computed �R is compared with the one that would have given a perfect agreement between the
low-Q behaviour of the experimental structure factor S(Q), normalized using either a CH4 or a
H2 measurement, and the S(0) thermodynamic limit predicted from Kr compressibility data. If
the nominal detector efficiency is employed in the calculations of �R (broken curves in figure 5)
a 1 and 2% accuracy is obtained, respectively, with methane and hydrogen normalization.
Agreement is even better if a higher efficiency is assumed (full curves in figure 5), though such
an assumption has no convincing experimental reason. Nonetheless, it is interesting to note
how the calculation for hydrogen is more sensitive to the choice of the detector efficiency and,
for this reason, how the same increased value for the efficiency brings in very good agreement
calculations and experimental quantities, both in the hydrogen and methane cases.

Finally, it is useful to observe that the better accuracy which seems to be attainable
with methane is counterbalanced, from a practical point of view, by the unavoidably longer
computing times required for this molecular system, especially with increasing E0. This is due
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to the far lower rotational constant of CH4(B = 0.65 meV) with respect to that of hydrogen
(B = 7.35 meV): many more transitions must be considered for methane, at given incident
energy and temperature. Therefore, the compromise between normalization accuracy and
overall computing time appears to make the two standards (H2 and CH4) both very good and
equivalent on the whole.

6. Inelastic neutron scattering data and calculations

Despite the considerable amount of work devoted to the prediction of the double-differential
cross-sections of hydrogen and methane, suitable experimental data sets allowing for a reliable
test of the computational results appear to be partly lacking in the literature. Comparison is
often made difficult either because available data are not normalized to absolute units, or
because large uncertainties lean upon the appropriate correction for important effects, such
as multiple scattering, or, finally, because neither correction for energy resolution broadening
was attempted on the spectra nor appropriate details on the instrumental resolution function
given, especially in the earlier papers.

Concerning the hydrogens, coherent inelastic scattering measurements on liquid para-
hydrogen and deuterium performed in the last decade [40], which would have been of some
interest to analyse with the treated models (also in terms of the possible choices for the
distinct dynamic structure factor Sd(Q, ω)), are unusable for our purposes since data are never
resolution-free (and the instrumental resolution function is not reported) nor normalized to
absolute units. The only possible comparison,based on an assumed resolution,plus a reduction
of data and calculations to the same integrated intensity, appears to be largely meaningless.

Further, no slow or thermal neutron scattering data appear to be available for the self
(incoherent) double-differential cross-section of H2. Conversely, an interesting comparison
between deep inelastic neutron scattering (DINS) data and the model calculations outlined
here, though modified to take into account quantum effects on the translational kinetic energy
and anharmonicity of vibrations, at the very high momentum transfers relevant for DINS, has
been performed in recent years [41] and will not be repeated here.

The situation is less critical with neutron inelastic data on methane, at least for the
incoherent scattering. Existing data on CH4 are, however, quite old [42–45] and usually suffer
from the mentioned problem concerning energy resolution broadening [42, 43] and/or missing
data normalization [44, 45]. Therefore, examples are limited here either to the comparison with
normalized methane data [42, 43], whose energy resolution effects can be taken into account
with some confidence, or with (unnormalized) low-E0 measurements [45], i.e. affected by
negligible resolution broadening.

Figure 6 reports the experimental neutron data for gaseous [42] and liquid [43] methane,
at fixed scattering angles. Incident neutron energy and sample temperature are specified on
each frame. Liquid methane data (figures 6(a)–(c)) are compared with the computed double-
differential cross-section (per unit scattered wavelength) according to the model discussed in
section 4, with two different choices for Ss(Q, ω): either the ideal gas model of equation (61)
or the ‘mixed model’ proposed by Egelstaff and Schofield [46], later discussed also by Copley
and Lovesey [47]. Such a model has the perfect gas form at high Q, and the simple diffusion
behaviour at low Q, according to [47]

Ss(Q, ω) = cQ2 D

π
√
ω2 + (Q2 D)2

exp(cQ2 D)K1

(
c
√
ω2 + (Q2 D)2

)
(65)

where c = M D/(kB T ), with D the self-diffusion coefficient, and K1 is the modified Bessel
function of the second kind. Note that nearly all the papers reporting the model of equation (65)
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Figure 6. (a), (b), (c): liquid methane neutron data at different scattering angles of [43] (dots),
compared with model calculations (section 4) using the ideal gas (broken curve) and the mixed
model (full curve) proposed by Egelstaff and Schofield [46, 47], with D = 2.7×10−5 cm2 s−1 [49],
for the translational self-dynamics. Calculations were convoluted with a ∼1.5 meV Gaussian
resolution function R in order to make the comparison with experiment possible (see the text). (d),
(e): gaseous methane neutron data at two angles of [42] (dots), compared with the calculations
performed with the ideal gas law for translations. Results with (full curve) and without (chain
curve) correction for a ∼1.5 meV resolution are shown.

wrongly indicate K1 as the modified Bessel function of the first kind, which, however, has not
the required asymptotic behaviour. Further, since the above model is classical, the detailed
balance condition has to be imposed before equation (65) is employed in the calculations. It
has been shown [48] that this can be done in an approximate way by multiplying the classical
Ss(Q, ω) by exp[(h̄ω/2kB T )− h̄2 Q2/8MkB T ].

In the calculations, the experimental value for the self-diffusion coefficient of CH4,
D = 2.7 × 10−5 cm2 s−1 [49], was used. Moreover, as indicated also by Dasannacharya
and Venkataraman in [44], the non-negligible effects due to energy resolution broadening on
the data of [43] could be taken into account by a resolution width of ∼1.5 meV, which has thus
been used for the convolution of the calculations with a Gaussian-shaped resolution function
(R in the figure labels). The ideal gas calculations were also broadened, accordingly.

No special comments are required about the general agreement between liquid methane
data and the present calculations using the mixed model of Egelstaff and Schofield.
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The significance of earlier comparisons with the same data, which neglected resolution effects
(see, e.g., [16]), is not clear.

Similarly to the satisfactory predictions for the liquid (once a reasonable model for Ss is
adopted), it is found that in the gaseous phase (figures 6(d) and (e)) simple molecular ideal gas
calculations are able to account reasonably for the experimental results.

Concerning the experimental spectra of [45], it is worth noting that, though erroneously
labelled in units of barn sr−1 µs−1 m, both in the original paper and in [17], data are only
relatively normalized. In fact, the reported values for the double-differential cross-section are
not realistic and would provide (by integration) a differential cross-section, at each given angle,
at least one order of magnitude greater than what it is known from diffraction experiments at
similar incident energies (see, e.g., figure 5 at 20◦). Therefore comparison with the present
calculations (which are in absolute units) is performed by preliminary area normalization of
the measurements of [45] to the computations, in the same range of neutron inverse velocity
covered in the experiment. The slow neutron spectra [45] for gaseous CH4 at room temperature
and various scattering angles are shown in figure 7, together with the predictions based on the
ideal gas Ss(Q, ω). Slight differences are observed at the lowest scattering angles, similarly
to the case of figures 6(d) and (e), while extremely good agreement is found at higher angles.
By comparison with the similar calculations reported in [45], a systematic and detectable
improvement is observed with the present calculations, at all angles. This can be due to the
various refinements introduced here, both concerning the Debye–Waller coefficients and the
transitions taken into account.

7. Practical aspects in the computations

It is quite obvious that the two fundamental parameters ruling the development of the
calculations are the temperature of the fluid and the incident neutron energy. The former
determines the initial roto-vibrational state of the sample, while the latter defines the possible
transitions. Some preliminary considerations are thus common to each calculation. A second
phase regards, instead, specific implementation and program refinement according to the
formulae given in sections 3 and 4, and depending on the systems under study (H2, CH4,Cl2,
etc).

It is understood that the simple remarks made in the following subsections (and the related
appendix) are only meant to help neophytes interested in the model computations discussed.

7.1. Common features of the calculations

The models described here all assume as the initial vibrational state of the molecules the
fundamental one (υ0 = 0, pυ0 = 1). This will hold if the thermal energy, kB T , at the
temperature under consideration is lower than the first excited vibrational state of the system.
As a second step, the latter has to be compared with the incident neutron energy E0, in order
to establish whether vibrational transitions can or cannot be induced by the scattering process.

Similar comparisons must be carried out for rotations. In particular, once the rotational
partition function has been calculated at the given temperature, the single state probabilities
pJ 0 (see, e.g., equations (20) and (49)) must be analysed in order to decide how many
rotational states are (significantly) thermally populated. In the examples given in the present
paper, calculations were typically performed for J0 = 0, 1, . . . , J0 max , with J0 max such that
pJ 0 max ∼ 10−6. For each J0 taken into consideration, one has then to determine the possible
final states, J1. If the neutron energy is so low that no transition is allowed towards higher
rotational states, then J1 will vary between 0 and J0 (i.e. anti-Stokes transitions only can
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Figure 7. Gaseous methane slow-neutron data at various angles of [45] (dots), compared with the
calculations performed with the ideal gas law for translations.

occur), else the incident energy value will be used to establish the maximum J1 that can be
reached, starting from a given J0. In this case, all those final levels satisfying the condition
EJ 0J 1 = EJ 1 − EJ 0 � E0 must be considered, and J1 will vary in general between 0 and
J1 max (J0) (i.e. Stokes and anti-Stokes transitions take place).

It is clear that, in terms of computing time, the situation gets progressively worse with
increasing temperature (many rotational levels are significantly populated) and incident energy
(many transitions are enabled), and with increasing the mass of the system (a lower rotational
constant B corresponds to smaller EJ 0J 1, and, thus, to more Stokes transitions, if possible).
Moreover, the larger the number of transitions, the harder becomes a smooth calculation of the
various quantities present in the models, such as the CG coefficients and the integrals Al,υ1 (or,
similarly, the spherical Bessel functions jl), without running into easy problems related to in-
sufficient stack space, or unacceptable computing time,or overflow, or, finally, rounding or inte-
gration errors. Part of these difficulties are nowadays by-passed with the powerful mathematical
tools provided by most commercial software. However, a good compromise between avail-
able functions and their efficient use in programs written under such packages is still missing,
mainly because these are often quite slower than similar programs written in other languages. A
possible approach is to take advantage of the quick and accurate evaluations which are possible
today for the quoted functions (Bessel functions, Legendre polynomials, etc) by performing
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their preliminary calculation in the required conditions (depending, however, on each transition
involved and each Q–ω point), and storing them in files to be used as inputs for more efficient
programs for the calculation of the double-differential cross-section. Indeed, this is found to be
quite an effective procedure, making the calculations generally possible in a reasonable time,
even with a large number of transitions, several scattering angles, and narrowly steppedω inter-
vals. In addition, this avoids the—always uncomfortable—use of libraries. Of course, it is not
always necessary to pass through the two-step calculation suggested above. In fact, the general
implementation of simpler conditions (limited number of transitions) usually requires nothing
other than completely standard computing tools (i.e. no special software), provided the overall
accuracy of the various functions’ evaluation is closely verified when their arguments are varied.

7.2. Special features of the calculations

While suggestions related to the specific functions entering the models can be found in the
appendix, a final hint for the accurate development of the diffraction case, as well as some
advice for the inelastic one in demanding conditions, are given in the following.

7.2.1. The differential cross-section dσ/d�. Some applications discussed here involve the
use of the differential cross section, once the double-differential one has been modelled.
More precisely, the evaluation of the integral � present in equation (64), and including the
detector efficiency, is often required. Thus, after the double-differential cross-section has been
calculated, one needs to also perform its numericalω integration. This further step is generally
simple, provided that the lower bound of the integration range (−∞, namely) is verified, as
well as the integration step.

In fact, the shape and ω extension of the integrand is highly variable with changing the
conditions in which the calculation is performed (E0, T,M, θ). Therefore, it is mandatory
both to check that the integrand is sampled with sufficient accuracy over the whole integration
interval (i.e. that the integration step is small enough) and that the integrand is evaluated down
to low enough ω, where one can be confident that its contribution to the integral has become
negligible. If, in given conditions (M , T and E0 fixed), the integration needs to be performed
at various scattering angles, a safe procedure is to look initially at both the high- and low-θ
behaviour of the double-differential cross-section (including efficiency). This will help in
identifying suitable values for the sampling step and lower ω bound, able to ensure an accurate
integration at all the angles of interest, and allowing for the implementation of an automatic,
but reliable, calculation with varying θ .

7.2.2. An example for an exacting case: chlorine at high temperature. Due to the considerable
mass of chlorine, the rotational constant B for this diatomic molecule is very low (0.0302 meV).
This, if combined with a rather high temperature and relatively energetic neutrons, makes the
number of possible transitions very high. If one is interested in the calculation of the isotropic
approximation for the double-differential cross-section of this molecule (for instance, for the
inelastic scattering correction in diffraction experiments, see section 5.2), then all the quoted
difficulties, related to high l values in the evaluation of the CG coefficients (see, e.g., the
appendix) and the integrals Al,υ1 ’s, will arise.

As an example, we may focus on the case of chlorine at 405 K and 14 meV incident
neutron energy: more than one hundred rotational levels are non-negligibly populated at this
temperature. Moreover, the above neutron energy is such that at least one Stokes transition
(however, there can be as many as twenty, if J0 is low) is enabled for each J0. In addition,
all anti-Stokes transitions are active anyway. Consequently, l values exceeding 200 should, in
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Figure 8. Importance of the square modulus of the integrals Al,0 as a function of l, at three different
scattering angles, for the case of chlorine at 405 K and 14 meV neutron energy. For each angle,
the curves corresponding to three different values of ω are shown: ω = ω0 (dots joined by a full
curve), ω = 0 (open circles joined by a broken curve), and ω = −195 ps−1 (triangles plus chain
curve).
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principle, be considered. Of course, the main difficulty in these cases is the computing time,
particularly because an accurate evaluation of the Al,υ1 integrals requires a very narrow step
at high l values. It is, however, useless to carry out the complete sum over all occurring l,
since these integrals give a negligible contribution when l is high. An example is given in
figure 8, where |Al,0|2 for chlorine in the quoted conditions can be analysed as a function of
l, at three different scattering angles. The behaviour of |Al,0|2 at low, intermediate and high
energy transfers is shown for each angle. From figure 8 it is clear that calculations can be
limited to l = 15, without losing important contributions. This was also specifically verified,
at the level of the double cross-section output, by comparison with a longer run where l values
up to 30 were considered.

8. Final notes

Applications in the field of neutron diffraction data analysis, including a rather recent
normalization technique, require both a reliable and efficient calculation of the double-
differential cross-section of some molecules. The main steps and approximations allowing
for practical computations were summarized here for basic cases. Generalization to other
similar systems or conditions can be accomplished easily. The increased power of computing
and mathematical tools available now is shown to provide an extremely significant contribution
to the accuracy attainable with such calculations, especially if supported by a careful step by
step verification.

As a matter of fact, really ‘user-friendly’ models for these calculations still appear
not to differ too much from what was already suggested 40 years ago. Indeed, not too
exacting refinements can be proposed, as well as extensions of the calculations—only possible
with modern tools—which undoubtedly lead, as was shown in this paper, to significant
improvements in the agreement between neutron experimental data and calculations. For
instance, quite a step forward was made here in the treatment of some vibrational transitions
for spherical-top molecules, without losing the simplicity and feasibility of the corresponding
computations.

A more than satisfactory picture of the experimental findings, both for the double- and the
single-differential self cross-section of these molecules, is ensured by the proposed computing
procedures. A very high (2%) reliability is reached, for instance, in neutron diffraction data
normalization using hydrogen or methane calculations.

Quite a non-negligible interest would cover the comparison of the reported model
calculations with—thermal or slow—neutron inelastic scattering data from liquid or gaseous
H2 (in absolute units and with detailed energy resolution information), though such a ‘simply
fundamental’ measurement is probably (and regretfully) only moderately appealing for today’s
experimentalists.

Open problems related to the slight inadequacies of the available models for the description
of CH4 inelastic scattering at small angles (sometimes identified with a possible sign of
intramolecular vibration–rotation coupling) would as well require new accurate data, duly
normalized and furnished with a precise knowledge of the experimental resolution function.
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Appendix. Technical details and useful parameters

A.1. Clebsch–Gordan coefficients

In order to carry out the diatomic case, with or without spin correlations, the CG coefficients
C2(J1 J0l; 000) have to be calculated for each possible J0, J1 and l. This is quite
straightforwardly done using a special case of the Racah formula (see, e.g., [33] vol II,
equations C.23(a) and C.23(b)) and the relation between squared CG coefficients and squared
3 j symbols for this case, i.e.

C2(J1 J0l; 000) = (2l + 1)

(
J1 J0 l
0 0 0

)2

. (A.1)

As already mentioned, the above CG coefficients are zero whenever J1 + J0 + l is odd. The
non-zero coefficients are usually computed without problems, if the required factorials entering
the quoted Racah formula are not too large. If transitions, and therefore factorials, grow to
the extent that standard programming fails, one can resort to the use of the gamma function,
usually available in commercial mathematical software, and having the property�(x +1) = x!.
Since the natural logarithm of � is usually the default output, the CG coefficients involving
high factorials can be reduced to the calculation of the exponential of an algebraic sum of
logarithms of gamma functions of appropriate argument (each depending on the rotational
quantum numbers, as defined by the Racah formula).

A.2. Spherical Bessel functions jl

In analogy with what was discussed already at the end of section 3.1 for the integrals Al,v ,
a correct calculation of high-order spherical Bessel functions by standard tools is an equally
delicate matter. An important well-known warning concerns the use of the recursion relation
typically reported for these functions, which gives wrong results when l exceeds the first 10
iterations, approximately. A much more reliable evaluation can be performed through the
series definition given in [50] or by separate use of specific mathematical software. When
many J0, J1 couples (and, consequently, l values) must be considered, the latter is not an easy
route: mainly because of too much data to be stored and, then, to be read by other programs
for each ω value and each scattering angle. In these cases, approximations appear to be
unavoidable, which will reduce the overall computing time to acceptable limits.

Performing the calculations with a reduced maximum l is, however, not critical, since all
the tests performed in this direction were successful in our experience, provided the upper l
limit employed in the calculations is verified in some way. For instance, this can be done by
comparing the output of a few long runs (i.e. without approximations), in selected conditions
(e.g. low and high Q), with that of corresponding short runs, using limited l values.

As an example, the case of CH4 at room temperature and 25 meV incident energy, can
be reported: 24 initial rotational levels were considered, as well as consequent final rotational
states, determined by E0 (giving rise to Stokes transitions up to J0 = 18). Various tests
confirmed that nearly exact calculations could be reproduced also by limiting the Bessel
function’s evaluation to l = 20 (while l could reach even 48, in principle).
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Table A.1. Basic quantities (rotational constants, equilibrium distances and vibrational mode
energies) used in the present calculations for hydrogen(s), methane(s) and chlorine.

H2 D2 Cl2 CH4 CD4

B [32] (meV) 7.355 3.708 0.030 0.651 0.328
D [32] (meV) 0.0057 0.0014
Req [32] / Req

X [51] (Å) 0.741 44 0.741 52 1.988 1.084 1.086
h̄ωv [32] (meV) 515.92 371.16 69.047
h̄ωλ [4, 32] (meV)
λ = 1 361.29 258.51
λ = 2 189.20 130.68
λ = 3 189.20 130.68
λ = 4 374.43 279.95
λ = 5 374.43 279.95
λ = 6 374.43 279.95
λ = 7 161.92 123.49
λ = 8 161.92 123.49
λ = 9 161.92 123.49

A.3. Legendre polynomials

Indeed, the calculation of the Legendre polynomials by the well-known recursion relation

Pl(x) = (2l − 1)x Pl−1(x)− (l − 1)Pl−2(x)

l
, (A.2)

presents no particular problems, holds up to high l values, and is easily implemented in any
program. In order to reduce the overall computing time (if many evaluations are required as
a function of the argument) it might be convenient to store them initially. In fact, it is useful
to remember that, in the diatomic case, the Legendre polynomials appear in the integrands
of the Al,υ1 ’s, whose accurate numerical integration might, sometimes, require a very narrow
integration step �η, and consequently many Pl evaluations.

A.4. Modified Bessel function of the second kind

As discussed in section 6, a possible model for the translational self dynamics is the Egelstaff
and Schofield one (equation (65)), which requires evaluation of the modified Bessel function
of the second kind, K1, for each scattering angle, each ω value and each transition (remember
equation (53)) involved in the calculation. Once again, the most efficient way to do this,
nowadays, is to store the needed arguments (as a function of ω, transition and angle), and then
calculate and re-store K1 by available mathematical software. A main program reading such
files may be implemented easily.

It might be useful to note, however, that for high arguments K1 tends to zero. This condition
makes the model of equation (65) fail—at least in a ‘numerical’ treatment—whenever D is
high, as happens for gases (D ∼ 10−2 cm2 s−1). This compels one to use the ideal gas model
and it is the reason why the mixed Egelstaff and Schofield model could not be used when
dealing with gas conditions.

A.5. Parameters

The relevant parameters used in the present calculations are summarized in table A.1 for the
various systems. Symbols were defined in the previous sections.
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In the case of hydrogens, indications concerning the possible use of a modified (few
per cent higher) equilibrium distance Req to allow for better fits of the intramolecular part of
the diffraction data has been sometimes reported [52]. However, the examples shown here
(which never make use of fit procedures) were found to be insensitive to so fine an adjustment
and, for this reason, the nominal values of table A.1 were anyway employed in the calculations
concerning hydrogen and deuterium.
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